157 research outputs found

    Sequential Logistic Principal Component Analysis (SLPCA): Dimensional Reduction in Streaming Multivariate Binary-State System

    Full text link
    Sequential or online dimensional reduction is of interests due to the explosion of streaming data based applications and the requirement of adaptive statistical modeling, in many emerging fields, such as the modeling of energy end-use profile. Principal Component Analysis (PCA), is the classical way of dimensional reduction. However, traditional Singular Value Decomposition (SVD) based PCA fails to model data which largely deviates from Gaussian distribution. The Bregman Divergence was recently introduced to achieve a generalized PCA framework. If the random variable under dimensional reduction follows Bernoulli distribution, which occurs in many emerging fields, the generalized PCA is called Logistic PCA (LPCA). In this paper, we extend the batch LPCA to a sequential version (i.e. SLPCA), based on the sequential convex optimization theory. The convergence property of this algorithm is discussed compared to the batch version of LPCA (i.e. BLPCA), as well as its performance in reducing the dimension for multivariate binary-state systems. Its application in building energy end-use profile modeling is also investigated.Comment: 6 pages, 4 figures, conference submissio

    PresenceSense: Zero-training Algorithm for Individual Presence Detection based on Power Monitoring

    Full text link
    Non-intrusive presence detection of individuals in commercial buildings is much easier to implement than intrusive methods such as passive infrared, acoustic sensors, and camera. Individual power consumption, while providing useful feedback and motivation for energy saving, can be used as a valuable source for presence detection. We conduct pilot experiments in an office setting to collect individual presence data by ultrasonic sensors, acceleration sensors, and WiFi access points, in addition to the individual power monitoring data. PresenceSense (PS), a semi-supervised learning algorithm based on power measurement that trains itself with only unlabeled data, is proposed, analyzed and evaluated in the study. Without any labeling efforts, which are usually tedious and time consuming, PresenceSense outperforms popular models whose parameters are optimized over a large training set. The results are interpreted and potential applications of PresenceSense on other data sources are discussed. The significance of this study attaches to space security, occupancy behavior modeling, and energy saving of plug loads.Comment: BuildSys 201

    Social Game for Building Energy Efficiency: Utility Learning, Simulation, and Analysis

    Full text link
    We describe a social game that we designed for encouraging energy efficient behavior amongst building occupants with the aim of reducing overall energy consumption in the building. Occupants vote for their desired lighting level and win points which are used in a lottery based on how far their vote is from the maximum setting. We assume that the occupants are utility maximizers and that their utility functions capture the tradeoff between winning points and their comfort level. We model the occupants as non-cooperative agents in a continuous game and we characterize their play using the Nash equilibrium concept. Using occupant voting data, we parameterize their utility functions and use a convex optimization problem to estimate the parameters. We simulate the game defined by the estimated utility functions and show that the estimated model for occupant behavior is a good predictor of their actual behavior. In addition, we show that due to the social game, there is a significant reduction in energy consumption
    • …
    corecore